6 research outputs found

    Multi-stream Longitudinal Data Analysis using Deep Learning

    Get PDF
    Longitudinal healthcare data encompasses all tasks where patients information are collected at multiple follow-up times. Analyzing this data is critical in addressing many real world problems in healthcare such as disease prediction and prevention. In this thesis, technical challenges in analyzing longitudinal administrative claims data are addressed and novel deep learning based models are proposed for multi-stream data analysis and disease prediction tasks. These algorithms and frameworks are assessed mainly on substance use disorders prediction tasks and specifically designed to tackled these disorders. Substance use disorder is a public health crisis costing the US an estimated $740 billion annually in healthcare, lost workplace productivity, and crime. Early identification and engagement of individuals at risk of developing a substance use disorder is a critical unmet need in healthcare which can be achieved by producing automatic artificial intelligence based tools trained using big healthcare data. In fact, healthcare data can be harnessed together with artificial intelligence and machine learning to advance our understanding of factors that increase the propensity for developing different diseases as well as those that aid in the treatment of these disorders. Here in, a disease prediction framework is first proposed based on recurrent neural networks. This framework includes three components: 1) data pre-processing, 2) disease prediction using long short term memory models, and 3) hypothesis exploration by varying the models and the inputs. This framework is assessed using two use cases: substance use disorder prediction and mild cognitive impairment prediction. Experimental results show that this proposed model can efficiently analyze patients\u27 data and creates efficient disease prediction tools. Second, the limitationsof current deep learning models including long short term memory models in claimsdata analysis are detected and addressed, and a novel model based on the transformer models is proposed. In fact, leveraging the real-world longitudinal claims data, a novel multi-stream transformer model is proposed for predicting opioid use disorder as an important case of substance use disorders. This model is designed to simultaneously analyze multiple types of data streams, such as medications, diagnoses, procedures and demographics, by attending to segments within and across these data streams. The proposed model tested on the IBM MarketScan data showed significantly better performance than the traditional models and recently developed deep learning models

    Application of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iran

    Get PDF
    Archaeologists continue to search for techniques that enable them to analyze archaeological data efficiently with artificial intelligence approaches increasingly employed to create new knowledge from archaeological data. The purpose of this paper is to investigate the application of Pattern Recognition methods in detection of buried archaeological sites of the semi-arid Khorramabad Plain located in west Iran. This environment has provided suitable conditions for human habitation for over 40,000 years. However, environmental changes in the late Pleistocene and Holocene have caused erosion and sedimentation resulting in burial of some archaeological sites making archaeological landscape reconstructions more challenging. In this paper, the environmental variables that have influenced formation of archaeological sites of the Khorramabad Plain are identified through the application of Arc GIS. These variables are utilized to create an accurate predictive model based on the application of One-Class classification Pattern Recognition techniques. These techniques can be built using data from one class only, when the data from other classes are difficult to obtain, and are highly suitable in this context. The experimental results of this paper confirm one-class classifiers, including Auto-encoder Neural Network, k-means, principal component analysis data descriptor, minimum spanning tree data descriptor, k-nearest neighbour and Gaussian distribution as promising applications in creating an effective model for detecting buried archaeological sites. Among the investigated classifiers, minimum spanning tree data descriptor achieved the best performance on the Khorramabad Plain data set. © 2016 Elsevier Ltd

    Integrating data science into the translational science research spectrum: a substance use disorder case study

    Get PDF
    The availability of large healthcare datasets offers the opportunity for researchers to navigate the traditional clinical and translational science research stages in a nonlinear manner. In particular, data scientists can harness the power of large healthcare datasets to bridge from preclinical discoveries (T0) directly to assessing population-level health impact (T4). A successful bridge from T0 to T4 does not bypass the other stages entirely; rather, effective team science makes a direct progression from T0 to T4 impactful by incorporating the perspectives of researchers from every stage of the clinical and translational science research spectrum. In this exemplar, we demonstrate how effective team science overcame challenges and, ultimately, ensured success when a diverse team of researchers worked together, using healthcare big data to test population-level substance use disorder (SUD) hypotheses generated from preclinical rodent studies. This project, called Advancing Substance use disorder Knowledge using Big Data (ASK Big Data), highlights the critical roles that data science expertise and effective team science play in quickly translating preclinical research into public health impact.Published versio

    Predicting substance use disorder using long-term ADHD medication records in Truven

    Get PDF
    About 20% of individuals with attention deficit hyperactivity disorder are first diagnosed during adolescence. While preclinical experiments suggest that adolescent-onset exposure to attention deficit hyperactivity disorder medication is an important factor in the development of substance use disorder phenotypes in adulthood, the long-term impact of attention deficit hyperactivity disorder medication initiated during adolescence has been largely unexplored in humans. Our analysis of 11,624 adolescent enrollees with attention deficit hyperactivity disorder in the Truven database indicates that temporal medication features, rather than stationary features, are the most important factors on the health consequences related to substance use disorder and attention deficit hyperactivity disorder medication initiation during adolescence.Published version2020-09-1
    corecore